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Using the principle of the mechanical stability of a system, a cr i ter ion for the disturbance of the 
uniformity of fluidization is obtained and the initial properties of the nonuniform fluidization state 
of a layer of fine particles close to a distributed grating (the porosity of the dense phase, and the 
concentration and dimensions of the drops which appear} are  considered. 

The fluidization systems used in practice are  usually nonuniform and can be regarded as a combination 
of a uniform "dense" phase with a high particle concentration and 'bubbles" of the fluidizing medium propagat- 
ing in it, containing practically no particles.  The problem of the character is t ics  of the bubbles and of the dense 
phase and also what part  of the medium flows through the dense phase of the layer and what part  in the phase 
of the bubbles is the essential  problem which ar ises  in the simulation and design of chemical reac tors  and 
other apparatus based on a fluidized bed (see, e.g., [1]). 

An effective solution of this problem involves, f irst ly,  surmounting the difficulties which ar ise  when 
analyzing the motion, increase,  and rupture of a single bubble in a uniform layer,  which becomes considerably 
worse when taking into account the hydrodynamic interaction and coalescence of bubbles under constrained mo-  
tion. Secondly, the propert ies  of actual nonuniform layers depend to a considerable extent on the dimensions 
and concentration of the "init ial"  bubbles which occur in the lower part  of the bed direct ly over the distributing 
grating. If there is a jet feed of the medium through a nozzle or an opening in the perforated grating the initial 
character is t ics  of the bubbles formed are determined mainly by the flow rate of the jet in the elementary jets 
and depend only slightly on the physical parameters  of the granular bed [2-5]. A quite different situation oc-  
curs in the case of a uniform feed of the fluidizing medium, e.g., using a porous grating, when the fact of the 
appearance of bubbles and also their initial propert ies depend completely on the physical parameters  of the 
meditun and the particles.  An analysis of this situation is given in this paper. 

The occurrence of nonuniformities is usually connected with instability of the uniform fluidized state 
with respect  to small random perturbations. However, such an instability is character is t ic  both for coarsely 
dispersed beds, fluidized by gases, which are  always nonuniform, and for layers of fine particles fluidized by 
dropping liquids, in which the transition to a nonuniform fluidization mode is generally not observed. In addi- 
tiont the rate  of increase can be estimated only for very  small perturbations (see, e.g., [6]}. Hence, the ap- 
plicability of the above considerations to the problem of establishing a nonuniform mode is problematical at 
the present  time. Under these conditions it is natural to use certain principles to solve this problem which 
have a fairly general and fundamental character ,  e.g., the well-known extremal principles of classical  mechan- 
ics and the thermodynmnics of i r revers ible  processes.  If even these principles are  difficult to prove in the 
case of the very  complex system considered, they can be introduced as a pestulative basis as possessing a 
high degree of physical reliability. 

The f i rs t  attempts to use this approach to investigate nonuniform fluidized systems were made in [7, 8]. 
The main idea of these publications is that in the presence of an excess flow rate of the flutdizing medium the 
granular bed expands so that its potential energy in the gravitational field is a minimum (an approach developed 
by Doichev [9-11]), by which a cr i ter ion was obtained of the establishment of a nontmiform fluidization mode 
and by which the correctness  of this principle and the initial assumptions were confirmed phenomenologieally 
by comparing its conclusions with the conclusions which follow from other c r i t e r i a  of the onset of the nonuni- 
form mode [1Z-14], proposed in the framework of other physical models. However, in [9-11] it was assumed a 
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p r i o r i  that the poros i ty  of the dense phase is identical  with the poros i ty  of the granular  bed in the dense -pack-  
ing state.* More  genera l  approaches  based on the introduction for  the fluidizod sys tem of a local  potential  and 
i ts  use to analyze a number  of ideas formulated in the nonlinear theory of thermodynamic  instabili ty [15] a re  
also known. In this paper  we use considerat ions s imi la r  to those put forward in [9-11]. 

We will r e p r e s e n t  the system as spat ial ly  uniform in the sense  that the s i z e  and concentra t ion of the 
bubbles a r e  approximate ly  the same in the volume it  occupies.  This means  neglecting the effects  of the bound '  
a r i e s  of the layer  and also al l  the p r o c e s s e s  by which the bubbles a r i s e  as  a r e su l t  of exchange between the 
fluldizing medium and the dense phase,  coa lescence  and burst ing.  Hence we will  only investigate f i r s t  of al l  
the nommfform fluidized state  that  occurs .  If these  p r o c e s s e s  a re  not pronounced, as occurs ,  for  example,  for  
the low layers  with low nonuniformity,  this  assumption may r e p r e s e n t  a good approximat ion to the descr ip t ion  
of the actual  fluidized bed as a whole. Note that a s imi la r  assumption,  also made in [9-11]; is widely used for 
s implif icat ion even when it is quite untrue (see,  e .g. ,  [1, 16, 17]}. 

The par t i c les  a r e  assumed to be smal l  so that the hydraul ic  r e s i s t ance  of the par t i c les  of the dense  
phase with r e s p e c t  to the flow of the fluidizing medium is l inear  with r e s p e c t  to the r a t e  of f i l tering.  Finally,  
for  s impl ic i ty ,  we will  a s sume  that the volume concentra t ion of the bubble phase ~ is smal l  compared  with 
unity. This enables us to assume that  the r a t e  of r i s e  of  a group of bubbles d i f fers  f rom the r a t e  of r i s e  of a 
single bubble of the same dimensions in the unlimited dense phase by  an amount  propor t ional  to 9 ,  and also 
enables us to a s sume  that the total  effect  of the bubbles on the flow of the fluidizing medium can be obtained 
by  summing the effects  of the individual bubbles as if they were  the same. In addition~ this assumption enables 
us to neglect  the downward motion of the dense phase which neut ra l izes  the t r a n s f e r  of par t ic les  upwards in 
the wake zones of the r i s ing  bubbles,  the veloci ty  of which is proport ional  to the product  of r by the smal l  
ra t io  of the volume of this  zone to the sum of the volumes of the zone and the bubble [ l l .  

We will  c ha r ac t e r i z e  the s ta te  of the idealized bed considered using the d i ame te r  D of the sphere  equal 
in volume to the bubble, and also by  the values  of the effect ive poros i ty  e of the bed as  a whole and the po ros -  
i ty ed of its dense  phase.  The volume f rac t ion  of the bubble and the re la t ive  expansion of the layer  a re  r e -  
lated to e and ed by the equations 

= s ~  , H = ~ l - - s *  , (1) 
1 ~ e  a H .  1 ~ e  

which follows f rom the condition of  conservat ion  of  the granular  m a t e r i a l  in the bed. 

The r a t e  of f i l ter ing of the fluidizing medium in the dense  phase (which we will  a s sume  to be s ta t ic  on 
the average)  can be  wri t ten  in the f o r i n t  

ttd = k I 1 ~ e 4 

Z 0 

,q ~ # "  B 

di  - -  do 
~do g (2a) 2, {2) 

Fig. 1. Sketch to explain the d e r i v a -  
tion of  the formula  for the average  
flow of fluidizing medium. 

*-~Vious i ;~-~e  c lass  of sys tem of the pa r t i c l e - con t inuous -med ium type, to which the principle  of minimum, po-  
tential energy can be applied, must  of necess i ty  be l imited.  In [7-11 ] only t ruly fluidized sys tems,  in which the pa r t i -  
c les  a re  in a suspended s ta te ,  i .e . ,  their  weight is complete ly  compensated by the hydraul ic  forces  of i n t e r ac -  
t ion with the re la t ive  flow of the fluidizing medium, a re  taken as be longingto  this class .  This e l iminates  f rom 
considerat ion,  for example,  s tates  in which a considerable  par t  of the medium "breaks  through" in randomly 
forming channels so that the granular  ma te r i a l  se t t les  and fluidization ceases .  A s imi la r  l imitation is natural ly 
imposed on the sys t em considered in this paper .  
~'Strictly speaking, the re la t ion  which applies to mobile  par t i c les  of the dense phase (e.g. ,  the R icha rdson-Sak i  
formula}, and not to a fixed layer ,  the hydraul ic  r e s i s t ance  of which is considerably higher  than that  of a uni-  
fo rm fiuldized bed, cannot be used. However ,  al l  the above formulas  a r e  approximate ,  and the use  of an e x p r e s -  
s ion of form (2} s implif ies  the compar i son  with the data  obtained by other  worke r s  and with that given in [9-11]. 
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corresponding  to the wel l -known K a r m a n - K o z e n  (k 1 = 180) and Ergan (k 1 = 150) equations. 

The r a t e  of r i s e  of the bubbles can be r ep re sen t ed  in the form* 

= Ubo (I + O~cp), Ubo = k2(gD) 1/2 [ (1 - - ea ) (d t - -do )  ]1?2, U b (3) 
[_ (1 --ca) di + eado J 

where ,  according  to TaylorVs theory ,  k z = 0.711. Obviously, Eq. (3) only makes  sense  ff the bubble in fact  
r e p r e s e n t s  a " m a c r o s c o p i c "  fo rm,  i .e. ,  D/2a  >> 1. 

We will  consider  the effect  which an individual bubble has  on the flow r a t e  of the liquefying medium 
through a hor izonta l  plane AA w, which in te r sec t s  the bubble as shown in Fig. 1. In the s y s t e m  of coordinates  
connected with the bubble,  for  the ve r t i c a l  component  v z of the veloci ty  of the med ium a t  the point B inside 
the dense  phase  we have  [4] 

v~=VrCOSO--vosinO= (Ub + 2V) cosZO-----1 sin20 - - ( u b ~ v ) ,  V=Ud/ea, R = D/2. 
2 

The plane AA' in t e r sec t s  the bubble a t  d i f ferent  l eve l s  z with equal probabi l i ty;  using the fact  that  cos20 = z2/r  2, 
and averag ing  over  al l  poss ib le  z, i t  is e a s y  to obtain the express ion  

R 

(cos~0) = ~ r 2 dz 3 \ r ] ' ( s i n20 )  = - 3 -  ~ 2 
0 

Hence,  the f i r s t  t e r m  on the r ight  side of the equation for  v z genera l ly  m a k e s  no contr ibution to the ave rage  
ve r t i c a l  component  of the veloci ty,  which is equal to - u  b + v. In the l abo ra to ry  sy s t em of coordinates  the a v -  
e r age  veloci ty  and flow of the medium in the dense  phase  equal  v and Ud, r e spec t ive ly ,  i .e. ,  a r e  the same  as 
the i r  va lues  when the re  a r e  no bubbles.  The a ve rage  "def ic i t "  of the flow through the dense phase  due to the 
fact  that  pa r t  of the plane AA~ pas s e s  inside the bubble is obviously equal to r R  z (s in 2 ~) udn , where  n is the 
numer i ca l  concentra t ion of in te r sec ted  bubbles  ill the plane AA'.  The ave rage  flow of fiuidizing med ium 
through the a r e a  lying inside the bubble,  on the bas i s  of the r e su l t s  obtained in [4], can be  wr i t t en  as r t l  2 . 
(s in  2 ~) (u b + 3ud)n.. Taking into account the fact  that  by definit ion ~R 2 (sin 2 ~)n = ~o, we obtain for  the a v e r -  
age flow in the layer  

u = (1 --q~) ua + ~ (ub + 3ud) ----(1 + 2q~) Ud + ePUb. (4} 

A re la t ion  of this type was a l r eady  a s s um ed  in [19], and then used by  many  authors  for  a modif ica t ion of the 
two-phase  theory  of fluidization. However ,  for l a rge  bubbles  surrounded by  clouds of closed c i rcula t ion,  i t  has  
been  subjected to c r i t i c i sm ,  e .g. ,  in [1], where  instead of u b + 3u d in (4) u b was used (this inaccuracy  is a lso  
c h a r a c t e r i s t i c  for  [9-11]). As follows f rom the ana lys i s  given above, t he re  is no b a s i s  for  this c r i t i c i sm.  

No theory  of the const ra ined mot ion of c o a r s e  bubbles  ex i s t s  a t  the p r e s e n t  t ime.  Hence,  to e s t ima te  the 
coefficient  ~ in (3), which f rom genera l  physica l  considera t ions  should not depend e i ther  on D or on the p r o p -  
e r t i e s  of  the dense  phase ,  we will  use exper imen ta l  data ,  which, according to [4, 18], a r e  sa t i s fac to r i ly  c o r r e -  
lated by the equation 

w o ---- u - -u~  + Ubo 

*Cons idera t ions  given in [4], according  to which the veloci ty  of the bubble in an actual  s y s t e m  with continuous 
supply of the fiuidizing medium exceeds  u b f rom (3) by an amount  u - Ud, a r e  e r roneous .  The conclusions in 
[4] a r e  based  on a compara t i ve  ana lys i s  of two s y s t e m s  of s im i l a r  gas bubbles  of the s a m e  volume concen t r a -  
t ion ~ in a dropping liquid: 1) uniformly filling the whole volume of liqMd, which is ensured  by continuous sup-  
ply of  the gas downwards with an ave rage  ve loc i ty  U, and 2) of the final cloud of bubbles  over lapping the whole 
c r o s s  sec t ion  of the column. It is  c l ea r  that  in the f i r s t  case  the liquid on ave rage  is s ta t ic ,  while the veloci ty  
of the bubbles  U1 = Ub, r = U. In the second case  we obtain f rom the ba lance  re la t ion  for conserva t ion  of 
volume that  the liquid inside the cloud is d isplaced downwards with veloci ty  Uf = - ~ ( 1  - ~) '1  U2 ' where  U 2 
is the ve loc i ty  of the bubbles  re la t ive  to the l abo ra to ry  s y s t e m  of coordina tes  in this  case .  I t  is obvious that  
U2 = Ub+  Uf=  U 1 - ~ ( 1 -  r  U2, so that U2 = ( 1 - r  Ul and U1-132 =r  = U. Hence,  the d i f fe rence  b e -  
tween the observed  ve loc i t ies  of the bubbles  in the s y s t e m s  cons idered  wil l  be  as  s ta ted in [4] and as  conf i rmed 
by the expe r imen t s  of  Niklin [18] quoted in [4]. But this  d i f ference  is not because  the veloci ty  of  the bubble e x -  
ceeds  the value Ub, a s soc ia t ed  with the mot ion in the s ta t ic  liquid in the f i r s t  case ,  but  on the con t r a ry  is due 
to a reduct ion in the veloci ty  of the bubbles  compared  with U b by  an amount U in the second case .  The inade-  
quacy of the suggest ions  put fo rward  in [4] is pointed out in a note to p. 143 in [6]. 
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for  fa i r ly  dense  bubbles,  when Ub0 >> Ud. Using the las t  inequality and re la t ion  (4) in this equation for u, we 
obtain, apar t  f rom second-o rde r  t e r m s  in ~o, an equation for  ub, and compar ing it with (3), an express ion  for 
H. In this way we have 

u~ ~ u~0 (! § ~), ~ ~ 1. (5) 

Introducing the d imensionless  p a r a m e t e r s  

[ N =  u-u-- T =  1 A r ( •  • 
u .  " ktk~ do (6) 

Ar = g (• - -  l) (2a)s 

and using (1)-(3) and (5), we can r ewr i t e  re la t ion  (4) in the form 

N' e,a N = e~(l -+-2e--3ea) _s. l e - -ca  ( 1 + ~.~--ea ) [  (l_ee)(~_ 1)]112'. (7) 
-----[--e,  ( l~ea)z  * T l ~ e  a 1 - - e  a ( l ~ e d ) n + e a  

According to the pr inciple  of maximum mechanica l  stabil i ty of the expanded fIuidized bed used in [9-11], 
the initial  nonuniform state ,  if it  in general  a r i s e s ,  is  such that the value of the flow f rom (4) or  of  the f luidiza-  
t ion number  f rom (7) is accura te ly  equal to the s imi la r  value for  a uniform layer  of the same par t i c les ,  f luid-  
ized by the same medium having the same poros i ty  e. Assuming that an express ion  of the fo rm (2) also holds 
for  the r a t e  of f i l ter ing of the medium in a uniform layer  we obtain 

1 ~ 8  a 1 - -gd  (1 - - ca )  • + e e I - - e  ~ ~eea)~ ] 

Equations (7) and (8) cml be rega rded  as a sys tem of two equations in t h ree  unknown quantit ies:  T,  e, and e d. 
This sys tem is incomplete  and hence we cannot de te rmine  these  quanti t ies in the fo rm of unique functions of  
the physical  p a r a m e t e r s  (occurr ing  in the express ions  for  Ar and ~ in (6)) and the sys tem pa rame te r  - t h e  
flnidization number N. In [9-11] this difficulty is c i rcumvented  using the two-phase theory  of fluidization by 
making the a r b i t r a r y  assumption ed = e , .  However,  there  is considerable  evidence (see,  in par t icu la r ,  [20- 
23]) that the t rue  dis tr ibut ion of the flow of the liquefying medium between the bubbles and the dense phase in 
a number  of cases  devia tes  considerably f rom the r equ i rement s  of the t~vo-phase theory.  When analyzing 
m a s s -  and heat -exchange p r o c e s s e s  between a medium and par t i c les  and when designing catalyt ic  r e a c t o r s  
with a fluidized bed and cer ta in  other  apparatus  this d i f ference  can somet imes  be neglected.  Never theless ,  i ts 
ro l e  is ex t r eme ly  la rge  when es t imat ing dif ferent  t r an s f e r  coeff icients  in the dense  phase of a layer  connected 
with pulsating (pseudoturbulent)  motion of  the par t ic les ,  s ince the intensity of the la t te r  depends v e r y  much on 
ed in the region of e . ,  and when ed ~ s ,  this  motion is genera l ly  degenera te  [24]. 

We will he r e  a s sume  as  the main  hypothesis  that in a sys tem with a given fluidization number,  contain-  
ing bubbles of a given s ize ,  the flow of fluidizing medium is dis t r ibuted between the bubble and dense phase so 
that the poros i ty  e is a minimum, i .e . ,  the cen ter  of gravi ty  of the expanded layer  occupies the lowest  pos s i -  
ble  position. Differentiat ing (7) with r e spec t  to ed with the conditions N T = const  and T = const  and assuming 
8e/0e d = 0, we obtain an equation for  de termining the function ed = eel(e)  which has  the following formal  form:  

0N'/&d = 0, T ---- const. (9) 

It is easy  to see that this equation is equivalent in accu racy  to the equation which would be  obtained using a 
quite di f ferent  hypothesis ,  viz . ,  that for  specified T and e the flow of fluidizing medium is dis t r ibuted between 
the phases  in such a way that  the dissipated energy  of the flow is a minimum. In fact ,  the power dissipated pe r  
tmit a r e a  of  t r a n s v e r s e  c ro s s  sect ion of  the layer  is equal to uAp, and the p r e s s u r e  drop  AP is independent 
of the dis t r ibut ion of the flow of the medium. Hence,  the condition that the energy  diss ipat ion should be a m i n i -  
mum is equivalent  to the condition that  the flow u f rom (4) for  the p a r a m e t e r  N ~ f rom (7), considered as  a 
function of ed, should be  a minimum, which again leads to equation (9). Calculating the der iva t ive  in (9) using 
(7) and substituting the re la t ion  for  T,  following f rom (8), into the express ion  obtained, we obtain 

ed) ea [(3 - -  ed) (I + 2e --  3ca) --: 3ca (I ~ ea)] ----Is 3 (I - -  Ca)2- 

1 + ~ . - 2 ~  -~ 2(1-~)~(5- - - :~)  
defining e d in the form of a function of e and ~. It is clear that 8, ~,ed ~e;  if the root of Eq. (10) lies to the left 
of e. on the numerical axis, we must take ed = ~,, and if it lies to the right of e then e d = e. 

A ~ y s i s  shows that apart from the obvious root ed = e, Eq. (10) has one real  root in the interval (0, e), 
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Fig.  2. Dependence of the poros i ty  of the dense  phase  
ed (a) and the volume concentra t ion  of the phase  of the 
bubbles  ~ (b) on the effect ive poros i ty  of the l aye r  as  

-* ~ (the continuous curves ) ,  and n = 2 (the dashed 
curves). 

if  e exceeds  a c e r t a i n  c r i t i ca l  value depending on n ,  which can  be  obtained b y  expanding (10) in s e r i e s  in 
t e r m s  of the sma l l  p a r a m e t e r  6 = e - e d in the reg ion  of the point e d = e, and requi r ing  that  as 6 i n c r e a s e s  
the lef t  side of (10) should i nc rea se  m o r e  rap id ly  than the right.  As ~ ~ ~ this  c r i t i ca l  value is  approx imate ly  
equal  to 0.343; it  i n c r e a s e s  somewhat  as ~ d e c r e a s e s .  

The r e su l t s  of a numer i ca l  solution of Eq. (10) for e d a r e  i l lus t ra ted  in Fig. 2; it can  eas i ly  be  shown by 
a d i r ec t  check that  this roo t  (10) in fac t  co r r e sponds  to the lowest  posi t ion of the center  of g rav i ty  of the l aye r  
or  to min imum energy  d iss ipa t ion  in it. F i g u r e  2 a lso  shows the dependence on e of the volume concentra t ion 
~o of the bubble phase ,  following f rom (1). The dependence of ed and ~o on n c e a s e s  to be  impor tant  when 

>> 1. At the beginning of fluidization, i .e . ,  for  va lues  of e which dif fer  only sl ightly f rom e , ,  the roo t  of Eq. 
(10) is l e s s  than e , ,  so that  in accordance  with the ma in  postulate  of the two-phase  theory  of f luidization we 
have  e d  = s , .  However ,  for l a rge  e the value e d m a y  dif fer  cons iderab ly  f rom ~ and f rom e. I f  the value 
of e ,  for a specif ied g ranu la r  bed is g r e a t e r  than a ce r t a in  c r i t i ca l  value,  which depends on n ,  the l aye r  b e -  
c o m e s  nonuniform immedia te ly  on pass ing  through the value N = 1 - the fluidization number ;  o therwise  the 
appea rance  of nonunlformit ies  p e r s i s t s  until N or  e r each  ce r t a in  values ,  somewhat  exceeding unity or  e , .  
This  effect  is pa r t i cu l a r ly  pronounced for beds  of solid pa r t i c l e s  in dropping liquids. On the whole, the point 
of v iew e x p r e s s e d  in [25] is conf i rmed rega rd ing  the absence  of a bas i c  d i f fe rence  between beds  fluidized by  
gases  and dropping liquids. 

Using the poros i ty  ed obtained above,  we find T f rom (8) in the fo rm of a function of e and n ,  which 
enables  the r e l a t ive  d imens ions  of the init ially appear ing  bubbles  to be  de te rmined  f r o m  (6) : 

D ( •  1) hr 
- -  - -  - -  ~r (• ~ 1) A r .  ( 1 1 )  

2a (ktk2T) ~ 

The dependence of T and 7 on e is  shown in Fig. 3 (in the e s t i m a t e s  we took kl = 150 and k2 = 0.711). 

In d i f ferent  modif icat ions  of the two-phase  theory  of f luidization it is usual ly  a s sumed  that [26] 

u = K u ,  + ~ub, (12) 

whe re  K is  a ce r t a in  unknown coefficient .  Compar ing  (12) with (4) and using (1) and (2), we obtain 

1 - - e  d 1 - - e  a \ e ,  ] 

The dependence of K on e is  i l lus t ra ted  in Fig. 4, whence it can be  seen  that  K m a y  cons iderably  exceed 
unity, in quali tat ive a g r e e m e n t  with exper imen ta l  facts ,  including those  given in [26]. We emphas ize  that  (13) 
only r e l a t e s  to the init ial  nonuniform s ta te  cons idered  and, consequently,  has  l imited appl icabi l i ty  to actual  
s y s t e m s  in which the re la t ion  between the flows of fluidizing medium in the dense  and bubble phases  changes 
as  a r e su l t  of exchange be tween the bubbles  and the dense phase ,  coa lescence ,  and breakdown of the bubbles.  

Substituting (8) into (7), we obtain 

N' = e 8 ( 1 4 )  

I - - 8 '  
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Fig. 3. Dependence of  the p a r a m e t e r s  T and y on e as  n 
and n = 2 (the continuous cu rves  and the dashed cu rves ,  

r espec t ive ly ) .  

Fig. 4. Dependence of the p a r a m e t e r  K on e a s  n - *  ~ and 
= 2 (the continuous cu rves  and the dashed c u r v e s ,  r e s p e c -  

tively) for  e ,  = 0.35 (1) and 0.40 (2). 

so that  a t r i v i a l  r eca lcu la t ion  enables  us to obtain the dependence of the quanti t ies  shown in Figs.  2-4  in the 
f o r m  of functions of N' or  of N and e ,  for  d i f ferent  ~ .  Note that  the effect  of the p a r a m e t e r  ~ in the reg ion  

> 2-5 on the shape of these  cu rve s  is not v e r y  g rea t ,  so  that  for  ~ >> 1 they can be cons idered  as  universa l .  

I f  u does  not exceed u ,  by  v e r y  much,  we have e = ~d + x, x << ed and e d ~ e , .  Using this  in (8), we 
obtain the c r i t i ca l  value for  the p a r a m e t e r  T a t  the instant  when fluidization begins:  

The g ranu la r  bed b e c o m e s  "macrononun i fo rm"  for  u = u ,  + 0 ff the quantity D/2a is fa i r ly  large.  Using 
va lues  of  the n u m e r i c a l  coeff ic ients  ki = 150 and k 2 = 0.711 when de te rmin ing  T in (6), and taking,  as  in 
[9-11], as  the c h a r a c t e r i s t i c  "boundary ~' value D/2a = 25, we obtain f rom (15) a c r i t e r ion  for  the es tab l i shment  
of  the mac ronon tmi fo rm mode  immedia t e ly  when the l ayer  changes  into the fluidized s ta te  

NI>(Nj)~ = 533 ee * (3 - -4e , )  ' . 5__r (161 

(Here  we have  spec ia l ly  used the notation employed in [9-11].) The r igh t  side in (16) sl ightly d i f fers  f rom that 
in [9-11], which is due to the use the re  of  the i n c o r r e c t  r e la t ion  for u instead of (4) and the value k 1 = 180 in-  
s tead of k 1 = 150 (when using the f i r s t  value the n u m e r i c a l  coefficient  in (16) should be  640, as  in [9-11]). 
Qual i ta t ively ,  however ,  a l l  the conclusions drawn in [9-11], a r e  conf i rmed on the whole,  and the  c r i t e r i o n  (16) 
c o r r e s p o n d s  to e x p e r i m e n t  and to o ther  p rev ious ly  p roposed  c r i t e r i a  to the  s a m e  extent  as  the c r i t e r ion  in 
[9, 11]. Sa t i s fac to ry  r e s u l t s  a r e  a l so  obtained by  comparLng (16) with the c r i t e r i a  p roposed  l a t e r  in [27, 28]: 

In conclusion,  we will  d i s cus s  s o m e  l imi ta t ions  of the above theory.  F i r s t  of  al l ,  the r e su l t s  obtained for  
the s t r u c t u r e  of  the ini t ial  s ta te  only make  sense  if f a i r ly  l a rge  bubbles  a r e  fo rmed ,  to which the above equa -  
t ions can be  applied.  For  this  it is n e c e s s a r y  for ,  say,  condition (16) to be  sat isf ied.  Fu r the r ,  for  l a rge  ed, 
when the dense  phase  is  cons iderably  r a r e f i ed ,  it is genera l ly  not c l ea r  whether  bubbles of the type usually 
cons idered  exist .  Hence ,  the model  m a y  a lso  not d e s c r i b e  the d i sappea rance  of the nonuniform s ta te  when 
the re  is a t r ans i t ion  f r o m  the fludized bed to a s y s t e m  with diluted phase.  Neve r the l e s s ,  for  beds  fluidized by  
a dropping liqt~d ( ~  < 10), for  e > 0.8 the value of e d rap id ly  begins  to approx imate  to e, which a lso  causes  
a co r respond ing  reduct ion  in r ( see  Fig. 2). Final ly ,  we made  ce r t a in  s impl i fy ing a s sumpt ions ,  of  which the 
m o s t  impor tan t  was the a s sumpt ion  of  the l inea r i ty  of  the hydraul ic  r e s i s t a n c e  of the pa r t i c l e s  of  the dense  
phase  with r e s p e c t  to the ve loc i ty  of  f i l te r ing of the fluidizing medium and the sma l lnes s  of the volume concen-  
t r a t ion  of the bubble phase.  It  is e a sy  to see  that  the breakdown of these  assumpt ions  does  not introduce new 
diff icul t ies  of a fundamental  c h a r a c t e r ,  a p a r t  f r o m  the p rob lem of de te rmin ing  the dependence of u b on r 
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N O T A T I O N  

Ar, Archimedes criterion introduced in (6); a,  radius of the particles; D, equivalent bubble diameter; d o 
and dl, densities of the fluidizing medium and the material  of the particles; g, acceleration due to gravity; H, 
height of the layer; K, coefficient in Eq. (12) for the two-phase theory of flu2dization; k i and k2, numerical co-  
efficients in (2) and (3); N and N', usual mud modified fluidization numbers; n, numerical concentration of the 
bubbles; R, bubble radius; r ,  radial coordinate in Fig. 1; T, a parameter  introduced in Eq. (6); u, rate of filtering 
of the fluidizing medium; u b and Ub0, bubble velocity under conditions of restr icted flow and the velocity of a 
single bubble; v, velocity of the medium in the spaces between particles; z, level of intersection of the bubble 
by the horizontal plane in Fig. 1; ~ ,  a coefficient which describes the effect of restr ict ion of the flow on the 
bubble velocity; ~/, a coefficient in Eq. (11); ~ = e - ed; e~ porosity; ~ ,  rat ioofthe densities in Eq. (6); ~, kine- 
matic viscosity of the medium; 0 and ~, polar angles in Fig. 1; r  volume concentration of the bubble phase. 
Indices: d and the aster isks,  dense phase and state of dense packing (initial fluidizatio~ respectively; and 
angular brackets ,  averaging over z. 
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